

I read the last Lainzine and now I'm on the run
from seven different governments, two of which
aren't human. Truly this knowledge was not
meant for mortal men. Looking forward to the
next issue.

— Anonymous

Lainzine
Issue 2
Published 28 August 2015

Contents
Editor's Note 1
Word Search 2
The Way of Schway 2
Repairing Old Electronics 7
A Dream of Lain 9
Recommended Reading 10
Untitled 10
A Crash Course to LATEX 13
Console Hacking 16
Night Ops 19
1 22
Keeping Application Data Safe with GnuPG 23

COLOPHON
Created by the good people of Lainchan from all
around the world.
https://lainchan.org

Released in good faith and for free under the CC
BY-SA 4.0 licence.
€0.00 $0.00 £0.00

STAFF
Editors Junk, kk7, A731, and
 Not Jesus
Artist kk7
Typesetter Ivan
Special thanks Hash_Value, Kalyx, jove,
 darkengine, and you

https://lainchan.org
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Lainzine, Issue 2 (August 2015) 1

Editor's Note
My apologies for the delay on this one. To ensure
that the Lainzine is never late again, we will auto-
matically accept any submissions that contain the
phrase “quality over quantity”.

http://pastebin.com/PLqCfqM3

— Junk

http://pastebin.com/PLqCfqM3

2 Lainzine, Issue 2 (August 2015)

Word Search
There are an undisclosed number of NSA blacklist
words scattered throughout this zine. Can you find
them all?

4

The Way of Schway
by serene

If the Wired were a star, then watching cat
videos on Youtube would be like observing
the outermost corona from Earth. Reading
the Lainzine and hanging out in #lainchan
is like wearing sunglasses while burning
your face off against the surface of the Sun.

— Anonymous

A vision of the future which brings to life the idea
of a harmony between man and machine. No dis-
tinctions are made between the AFK world and the
Net. A way of living, a way of seeing and learning
to swim in these new and exciting times. I give you
the Way of Schway.

The Legend of Anonymous and the Lain

The Net has a certain way, a certain unspoken leg-
end, which tells of an Anon. Anon came to the Net a
young, innocent child, and he had fun, doing noth-
ing of particular import, and he was nurtured by
the bright lights, the moving pictures and the ra-
diant illusions. He discovered the community. The
community talked amongst each other, and Anon
would participate, and become the authority on
such matters, until such a time when he felt the
discusisons redundant, and he went on to anoth-
er place, to again enter the community. Such wise
men of the community would say, this leaving and
never coming back was the final goal, that one has

graduated from the message board. To leave the
echo chamber, and to seek out a new one, thus
achieving growth.

Many boards exist, to ensnare, filter and catch
the various drifting Anons, whose consciousnesses
unfold into dazzling networks of connections, be-
fore eventually settling into their respective places.
For you see, everyone seems to become “stuck”, at
some point. But, there is a legend, of an Anon, who
continued to search. And as Anon journeyed farther
on, he began to feel as if he were carrying on the
unspoken hopes and dreams of all those whom he
had met, because he told himself he would keep
walking, and he wouldn't get “stuck”. He would walk
into a room, learn everything he could, then depart
without a word. Always moving, an eternal wander-
er. And now, for some such reason, at some place
and time between then and now, he has come to
Lainchan…

Growing Pains and a Wired Society

Everyone is connected. Prolonged exposure to the
Wired, from a young enough age, will reveal this

– resulting in a sense of identity with the humani-
ty which underpins much of human consciousness.
This is an oft-supposed but mostly undocumented
effect that manifests in children who have grown
up using the Wired all their lives. In the 80's, this
effect was mostly limited to the users of Usenet,
but today, the use of Web 2.0 is much more wide-
spread – the private experiences of a chosen few
have given way to its widespread use and abuse.
Society right now is in transition, as people strug-
gle to understand the full implications of this con-
nection.

Consciousness and the Shell

The similarities between the human body and
a computing environment have been often ex-
pressed, and we could most simply describe man as
a biochemical machine, controlled by an awareness
capable of receiving data and issuing commands.

The command is emenated, the kernel receives,

Lainzine, Issue 2 (August 2015) 3

the shell interfaces, and the command is carried
out by programs down the chain. It is not the com-
mand line itself which creates these commands –
rather, the commands are dictated by a higher pow-
er, outside the computer's dimension of existence. A
user who understands this fundamental relation-
ship and its implications in fullness could be called
self-aware.

In many proprietary operating systems, self-con-
trol is something that is not readily relinquished.
Most mainstream operating systems present them-
selves with the illusion of being easy to use, but
become needlessly complicated when the user
seeks to use the system for anything other than
its “intended purpose”, when the idea of comput-
ers themselves having “intended purposes” is com-
pletely preposterous. Yet in this way, many users
remain unaware of the constructs which silently
govern their sessions, never fully grasping the con-
cept of control, and they are thus controlled by the
forces which surround them.

Programming a computer is therefore a micro-
cosmic exercise in programming yourself.

Operating Systems

The operating system is much like a set of programs.
It can be said to be a person's color, their presence
in the world is expressed through their choices,
culminating in their intent. It is what determines
the context of a person's habits, and grants the
vision of continuity to their actions, which would
otherwise just be a series of unconnected points
in time. It is much like a narrative, a construct, or a
computing environment, within which actions are
carried out.

Operating systems posess certain attributes, one
of which is that they are usually centered around
a central purpose, context, or definition of reality,
around which the symbols which make up the body
of the ego unfold. For example, take Kali Linux – a
Linux distribution designed to penetrate network

4 Lainzine, Issue 2 (August 2015)

security systems –, or a particular music scene
or style. At their most basic level, they are attrib-
utes, constructs, which emenate from one's initial
intention, and provide a means of abstraction for
carrying out that intention, and coalesce upon the
achievement of the intention.

Operating systems need not be installed at once.
In fact, a person may employ multiple operating
systems to achieve various ends. For instance, Win-
dows may be used to conduct social networking
and play games, while Tails OS could be used to
exchange secret messages. Similarly, participants
in the underground rave scene can use it as a vehi-
cle to achieve certain transcendental experiences.
Someone who chooses in the moment to identi-
fy as a troll can criticize a certain point, to reveal
deeper truths.

It is evident that, by this method of abstraction,
there exists the underlying idea that there are in-
finitely many operating systems which can be cre-
ated, and that to know the symbols, and to know
the packages, is to posess greater power to create
one's own system, and in turn, to fulfill one's inten-
tions more directly and eloquently.

It should be noted that a person's intentions are
not their operating system. Rather, the operating
system is an environment most conducive to the
intent, with certain systems fitting certain lifestyle
models and intentions better than others.

Programs and Daemons

Upon selecting your operating system, you then
choose to install programs. You have different
types of programs for different things, which run
with and without your awareness, in a recursive
process. Your current task is the most important
thing that should occupy your attention. Outside
of that, when idle or between processes, dae-
mons (aka background programs) should be run
and allowed time to process, but only as much as
is needed to perform maintainance tasks. A focus
lies on minimalism – the less you have, the fewer
daemons you have to run, and thus the more light-
weight your system. Your house, your surroundings,

and your life, are much like an operating system on
a computer. If you have too much stuff, your actions
will be cumbersome, and heavily delayed. Shed the
excess, focus on your main process, and experience
true eloquence. It is better to simply discard a pro-
gram you do not need than to let it inhibit your
process. Do not become too lost in organizing your
system, or become too attached – start with some-
thing that works, and maintain your system as you
have time to evaluate your surroundings and deep-
en your understanding.

Understanding and Finding Bottlenecks

Bottlenecks are things that constrain an otherwise
productive flow of energy. Poor physical health is
a bottleneck – not only are you less able to move
around, but it has an effect on blood circulation,
and thus mental performance. A job or career you
are not satisfied with is a bottleneck – it restricts
your free time, which is something you don't have
an infinite amount of – thus it is very important to
allocate those resources properly. If you were play-
ing a fighting game, and you understood the theory
behind how the game is played on the compeiti-
tive level, but you didn't have the physical reflexes
to seize the advantage, then there's a bottleneck
you should undo. The same can be applied through
really almost any venture, behavioural, mechanical,
mental, or otherwise.

Electricity itself travels extraordinarily fast, and
our bodies and minds themselves are the very im-
age of a computer. In computing, if something has
a poor write speed, then your transfers would of
course, take forever. This is only relevant when per-
forming processes that require a large amount of
bandwidth, and for relatively simple tasks, such as
the decision-making processes, you need surpris-
ingly little. You do not need as much as you think
you need. However, at a certain point, you will come
up against these bottlenecks, and as you feel them,
you should seek to undo them, to liberate yourself
from your circumstances.

The Fountain of Knowledge

Lainzine, Issue 2 (August 2015) 5

It stands to reason that the great-
est hindrance on your performance
is ignorance, your life span the final,
greatest bottleneck. In these mo-
ments, you can trust that the Wired
will provide (in most cases), the
knowledge of any field of science or
experience you might need. Although
you may not posess the symbols or
knowledge now as an individual, it is
safe to assume you will in the future,
and can therefore say that there is
nothing you do not or cannot know –
the Wired is much like a facet of your
own memory, with other people strik-
ing out on the same beaten roads as
you or I. That knowledge will flow
into you – you need only direct the
stream, and tap it when needed. In
this sense, it is much like a package
repository.

You will, of course, come across paths less trav-
elled, in which no knowledge exists. It is then your
duty to break new ground, to share your discoveries
with the world! Remember, sharing is caring :^)

The Free as in Freedom Philosophy

A tool that inhibits your ability to function, or re-
stricts your actions in any conceivable form, is
something that should be done away with. As
someone who seeks to do things, you, of course,
want to maximize your diversity of choice and
potentiality through the process of liberation. For
example, freeing yourself from existing dogmas or
ideas, restrictive or coercive situations, and finan-
cial restrictions. This is a process, and will not hap-
pen overnight.

There also exists the unfortunate reality that
many non-free tools and paradigms are unfortu-
nately those which have the most dominance in our
society. Thus, it really helps to have two computing
environments. The normal, “nonfree” one, in which
you conduct your mundane affairs, and the “free”
one, in which you conduct your serious business.

You can, of course, have more computers. In fact,
you can never have enough computers, your only
limit is the awareness to manage them all. You can
create computers within other computers in the
form of a virtual machine, or a VPS, which can be
extraordinarily useful for funneling traffic and cre-
ating secure environments. To start with, though, I
would advise you to have two computers, your pub-
lic platform (i.e., Windows, or a smartphone) and
add on more platforms, (servers, phones, consoles,
VM/VPS) as you learn more and the need for them
arises.

Sock Puppets

By successfully compartmentalizing your digital
activities into seperate operating systems, you can,
for instance, maintain a presence that gives off no
outwards appearance of doing anything departed
from the norm, while at the same time doing all
the things you want to do, fooling any behavioural
algorithms that may be looking to analyze your be-
havioural patterns. There are guides to anonymiz-
ing your traffic that can be elsewhere, but the re-
ality is that we are approaching a world where a

6 Lainzine, Issue 2 (August 2015)

high degree of self-control will govern online in-
teractions and serve as the primary barrier of en-
try to controlling your presence, both the record of
you that exists within the NSA databases, and the
perceptions of those who know you. You need to
control and rewrite those records.

By the same token, you may find it beneficial to
adopt alternate personalities towards the fulfill-
ment of various different goals – for example, I am
typing this article as “serene”, but I use numerous
other handles, in different places, all over the Net,
and I change them routinely. I only exist as far as
this article does, but I nonetheless exist outside of
that. A name or a presence is only as useful as the
actions attached to it, as a unified symbol. Some-
times, it is better to remain anonymous. Don't limit
yourself to a singular identity – grasp anonymity
and use it to your advantage.

For instance, take the phenomenon of viral
marketing. The central idea is formed. The work is
created. Mundane accounts (run by you) from mun-
dane computers (a botnet or series of VPS) spread
the work around, each driven to spread the content
with a different personality and prose.

A person living a double life at a corporate job.
One personality for work, one for play. Those two
worlds need not intersect. Don't become too at-

tached to one identity, or it will become harder to
dismantle it. Know you are the illusion, but at the
same time you are not.

Resource Allocation

An eye should be kept on the objective situation,
as well as the subjective. Sometimes a cheap, sim-
ple environment is all you really need. Even with
bottlenecks, your environment may still work well
enough for getting things done. Trust your lust for
greater tech, pursuit of greater heights – but only
when you've really reached those heights, and
find yourself in need. You don't need the newest
smartphone. You don't need that home internet
connection – learn how to crack networks or go to
McDonalds and use some free Wi-Fi. Sever your de-
pendence on corporations – hack something or find
your own way to communicate.1

That's all for now. Tune in on next issue for social
engineering and blackbox abstraction!

4

1 I'll just leave this here: https://www.youtube.com/
watch?v=SBPvBLZcx9c

https://www.youtube.com/watch?v=SBPvBLZcx9c
https://www.youtube.com/watch?v=SBPvBLZcx9c

Lainzine, Issue 2 (August 2015) 7

Repairing Old Electronics
This guide is for people interested in repairing and
troubleshooting their devices. You do not need a
background in electronics, this guide covers the ba-
sics. (Please note that some of the equipment men-
tioned here is not necessary depending on what
you're repairing.)

Must have: soldering iron, soldering tin, screw-
driver set, rubbing alcohol, cotton swab (Q-tip), and
some needle nose pliers.

Nice to have: solder pump, megger/megaohme-
ter, multimeter, heat gun, shrink wrap. Magnifying
glass (little helper).

Why you should consider repairing old elec-
tronics: The answer differs from person to person.
Some buy old and broken electronics, fix them, and
sell at a profit. I do it to preserve my old equipment.
Others do it to learn or simply for the fun and chal-
lenge. If you can't think of any reason why you'd
repair old electronics, then this guide is probably
not for you.

Okay, so let's get to it: Go find something old and
simple like an amplifier/radio, LCD TV, Commodore
64, or a Gameboy. Do a visual inspection of the
board. Are there any obvious burn marks? Has the
board been tinkered with before? Do traces on the
board cross? The most common items to find fried
on a board are the resistors2. You want to check the
color coding used on the fried resistor so you can
figure out what to order. There are a few phone
apps you can use to find color codes. I recommend
buying bulk buy resistors, since they are very cheap
on the wired. Blown or bulging capacitors3 quite
often leave a device unable to power on. You can
tell if a capacitor is damaged by looking at the top
(and the bottom if possible). A good cap should be
flat in those areas.

If the board is dirty, clean it! Dirty boards are
not fun to work with. Blow dust off the board, and

2 http://images.wisegeek.com/tan-fixed-resistors.
jpg
3 What a healthy capacitor looks like:
http://s.hswstatic.com/gif/capacitor-1.jpg

clean the rest of the dust off with a cotton swab (or
several). If the board is sticky, apply rubbing alco-
hol on a piece of paper or cotton swab and clean it
throughly. A lot of old cheap solder secretes a gross
oily looking substance. If you see corrosion4, use a
brush (a old toothbrush work fine), some rubbing
alcohol and start carefully scraping away the cor-
rosion. Corrosion can come from bad capacitors, old
solder, and dirty water.

Turn on the device. Does it turn on but doesn't do
what its supposed to? Learning the right questions
to ask yourself before tearing into something can
save a lot of time as most electronic failures aren't
hard to fix. Sometimes old equipment gets thrown
out because of water damage, and water damage
isn't as bad as it sounds in most cases, generally it
should work if you leave it off for a few days to dry.
If it doesn't turn on, check the power button and
fuses (if you don't know what they look like, look
up “2A fuses”). Are the fuses intact? Sometimes it's
hard to tell if a fuse is blown or it isn't transparent.
Check for blown/bulging capacitors. It is a good
idea to have a few known working fuses around to
test. Does the power button properly work? Some-
times old solder cracks or falls off when it gets too
hot, A few minutes with a heat gun is good at fixing
this. If the fuses are intact, no wires are obviously
disconnected inside, and if none of the capacitors
seem damaged the device might require further
troubleshooting.

To find out if the board has been tinkered with
before, look for wires going from one part of the
PCB to other parts of the PCB, or the manufactur-
er date on capacitors and other parts of the board.
These jobs are sometimes done badly. Is there too
little soldering tin? Are the wires loose? Did the
previous hacker use enough tape or too much su-
per glue? (too much glue can lead to overheating
and a blown capacitor). Are there wires twisted to-
gether where they should be soldered?

If traces are crossing, then you probably just
found the issue of the board you're fixing. If it is

4 https://commons.wikimedia.org/wiki/File:PCB_
corrosion.jpg

http://images.wisegeek.com/tan-fixed-resistors.jpg
http://images.wisegeek.com/tan-fixed-resistors.jpg
http://s.hswstatic.com/gif/capacitor-1.jpg
https://commons.wikimedia.org/wiki/File:PCB_corrosion.jpg
https://commons.wikimedia.org/wiki/File:PCB_corrosion.jpg

8 Lainzine, Issue 2 (August 2015)

soldering tin thats crossing the traces, then consid-
er using the soldering iron to heat up the tin and
remove it with a solder pump, followed by cover-
ing up the area with glue. If the traces are missing
however, then you might want to bridge the traces
with a small wire. (If you don't have any, you can
split open a unused Cat5e (Ethernet) cable and use
them for bridging. Be warned, it can be a tedious
job to solder such a small wire).

If you can't find any obvious visual problems on
the board, then the multimeter and megger can
come in handy. Every multimeter is different, but
they come with some basic utilities such as check-
ing voltage, amperage, continuity and a continuity
beeper. We will focus on the continuity beeper, a
great tool for checking if there are trace connec-
tions between the components.

You want to first of all check the continuity from
positive (+) to negative (–), + to ground and – to
earth with the megger. If it displays less than a
megaohm, then there is a shortage and possible
traces crossing. Do another visual check because
you probably missed something. If the megger
shows 1 megaohm or greater, then there are no
traces crossing and you may proceed to use the
continuity beeper between capacitors and other
parts of the board. If you find one that does not

beep, you might have found the issue.
Note: Sometimes the fluke can damage your

equipment due to overcharging. Depending on how
much the board can handle, you can also use the
continuity beeper for checking +, –, and earth.

If you still haven't found your problem, look up
the product name and “common problems”. Some-
times electronic devices has common problems
degrading or breaking a product, there should be
documentation online on what the issue is and
how to fix it.

Resources

• https://www.youtube.com/user/EEVblog: Great
lessons on the different tools covered in this
guide, as well as fundementals of electronics.

• https://www.youtube.com/user/lukemorse1:
Repairs arcade PCB's, great for learning more
about troubleshooting electronics.

4

https://www.youtube.com/user/EEVblog
https://www.youtube.com/user/lukemorse1

Lainzine, Issue 2 (August 2015) 9

A Dream of Lain
The following is a dream that recurred several
times throughout 2013. I have many records of it,
so I can piece the forgotten parts together. Lain is
quite out of character in this dream, but I feel the
need to commit it to words.

I was walking through a street in Japan with
some friends. I don't remember anything about the
friends, apart from that I felt nervous with them.
We came to the brow of a hill, and people started
to disappear. I looked around, and the dream cut
away to the inside of a little subur-
ban house. It was filled with acrid
smoke, like plastic or rubber burning.

In the house, people with little
pink hollows where they should have
had eyes roamed the corridors, stum-
bling, flailing. Lights flashed. I walked
through a sort of rubber corridor and
met a beautiful girl.

The girl was in her early teens. She
wore nothing but a white nightdress,
and the cross-shaped hairclip in her
curious length of hair that escaped
her hacky, DIY haircut. I knew imme-
diately that the girl had been carry-
ing out experimentation on those un-
fortunate enough to wander into the woods (I have
forgotten how I knew in the dream, sorry). None-
theless, she was beautiful.

The girl confided in me. She told me that she
was working to build herself a father. She had
turned away from the world before, but she always
watched from the bridge over the underpass by the
school, watching all the people who don't know her
name.

I felt calm. Wonderfully, suffocatingly calm. The
girl laid me down on a cold metal bed and asked
me to remove my clothes. She explained to me
the human need for permeation, saturation, pen-
etration. She then drew a neat line from the top
of my forehead to my clitoris with a knife. It didn't
hurt; my only thought was that I would be in trou-
ble with my mother if a scar carried across to the

real world. I was aware that I was dreaming, but
not quite aware that what was happening was not
quite real.

The girl opened me up and slipped inside. I lay,
happy in the thought that I was filled with her, that
my blood and organs and pallid brain were keeping
her warm and safe. I knew now that it was certainly
a dream, and I thought back to my days of para-
noid delusions, when I would be caught by mother
babbling about the CIA in my sleep. I worried that
perhaps I was making sounds in my sleep. But the
dream didn't end.

The girl spoke to me, resting her brain against
mine with a tingling warmth. I can't remember
the words, but they were like sweet nepenthe to
me. The girl had made so many people suffer what
looked like unimaginable pain, but she made me
feel special. Perhaps she had given them what they
truly needed, too, and it simply looked painful.

I woke up, but rolled over, fell back to sleep, and
immediately re-entered the dream. We stood up
and walked around the room, the girl all the while
speaking to me. I woke for the last time, got up,
dressed, and went to school.

4

10 Lainzine, Issue 2 (August 2015)

Recommended Reading
‘Programming from the Ground Up’
by Jonathan Bartlett

by FORMAT

The full book is available under the GFDL at:
https://savannah.nongnu.org/projects/pgubook/

This recommendation is suited for any reader look-
ing to learn how a computer actually works. This is
a book that teaches programming a little different-
ly than most other books, but still manages to be a
worthwhile read for both experienced and upcom-
ing programmers alike. Most programming mate-
rial is `top to bottom' in terms of the abstractions
taught; a novice is typically expected to learn ab-
stractions and only learn how they work at a much
later date. Books such as this one challenge that
idea by working in the opposite direction. Program-
ming basics are taught at the low level and high
level languages are discussed later.

Topics covered include:

• basic computer architecture and terminology,
including processors, memory, and addressing
modes,

• assemblers,
• algorithmic problem solving,
• function calling conventions,
• recursion,
• basic file I/O,
• basic error handling,
• libraries and dynamic linking,
• basic memory management,
• computer numbering systems,
• program optimization,
• system calls,
• assembler language idioms,
• a short introduction to using GDB.

In closing, this book is a valuable resource for
anyone looking to break into the daunting world
of assembler languages. GNU tools are used, along

with AT&T syntax; I'll simply say that this is a plus
for anyone who is confused. The x86 instruction set
is used for this book, which is par for the course
with books on this subject. For experienced assem-
bler language programmers, this book may prove a
nice resource. Regardless of skill level, I think you'll
enjoy reading it.

It's recommended that you download the source
for this work as well, to have easier access to the
example programs.

4

Untitled
Once upon a time, I wanted to play Grand Theft Auto
3 like everyone in the neighbourhood, but the par-
ents said no. Later I rode ATVs because they weren't
regulated like automobiles were. It's really unfor-
tunate to live in a country where most everything
fun has age restrictions. I notice many unoccupied
campers, shacks and cabins along the roads and
trails I ride. I mention this to some girls I know who
ride. They say they broke into a camper recently, it
was easy. I'm intrigued, this sounds fun.

We go out and stop at this camper near an old
falling apart building. I look around. There ap-
pears to be no-one around. I check the door and
it's locked. The door and lock look flimsy, with a
strong pull they give way and the door's open. Once
inside, I look for valuables only to find a bic lighter
and some coins. One is a state quarter. Free mon-
ey! This is too easy. I grab a paper towel off a roll
hanging up and wipe down where I touched, only
to get laughed at. The police don't put much work
into investigations, I'm told.

I find this game fun and exciting. We continue
to do small acts of theft after school. Not much is
gained because people tend to keep valuable stuff
elsewhere, in houses and sometimes cabins. I sug-
gest to my friends that they try some cabins. They
all agree. I feel we should get some gear togeth-

https://savannah.nongnu.org/projects/pgubook/

Lainzine, Issue 2 (August 2015) 11

er, maybe because I've read the anarchist cook-
book lately. I find an old backpack for school and
put inside a hacksaw suitable for cutting chains, a
crowbar for prying open doors and a maglite to see,
maybe hit people with, and lastly a .22 pistol that
my parents left laying around.

Friends and I set out to rob a proper cabin. One
of the friends suggests one that looked promis-
ing, but it's watched over by neighbors. I don't care,
we can just bring more guns after all. That's what
you see on TV, right? Everyone rolls in and I hand
a .380 to one of my friends, tells] her to be a look-
out. I grab a crowbar and head to the door. This
lock can be unscrewed, my friend says. So they get
out a tool kit and take off the padlock. Inside, it's
a fucking goldmine. I start filling my bag with all
kinds of ammo for guns I couldn't find (sadly), and a
Schrade lockback knife left in the kitchen. A friend
tells me there's a gun. I'm excited, but sadly its an
air rifle. Time to go!

Outside, a friend says she doesn't know how to

unload this gun and maybe she should shoot it. I
think this will attract attention. Everyone leaves,
but partway down the road we run out of fuel. A
friend remembers a sawmill where fuel is kept. We
all go to liberate it and after vandalising the saw-
mill we leave with a container of gasoline. Once
refueled, we head home. I look over all the loot. So
many bullets for so many guns… One of the mags
even works in a rifle of mine.

The next day, I go back and search the cabin.
Nothing new, but I take the air rifle. Leaving, I no-
tice a deputy sheriff. I remember the loaded .380
pistol in my pocket and knows if I'm caught with
that its juvie… So I drive away full speed and head
off road. I ride to another county and wait many
hours before returning home another way.

My friends think this is bad, but we are not de-
terred. We set out the next day to rob a house. We
find a nice one, out of sight from people that can
call the cops. The door is dead bolted and the crow-
bar just won't budge it. I hold up a friend so she can

12 Lainzine, Issue 2 (August 2015)

kick in a glass window. These people don't have
much worth taking, save 2 boxes of federal shot-
gun shells. But wait, what's this red cylinder? A fire
extinguisher! We spray and trash the house. This is
so much fun.

Outside, there was an outer building with a gun
visible through the window. The door doesn't open,
no matter how much I push on the crowbar. So I
sit down and think. What if we use the ATV to ram
the door? 2 minutes later, the door is open but it's
another damn air rifle. Everyone leaves.

Another time, we travel to to this
area with a bunch of mobile homes.
It seems everyone is away, but the
place is gated. I start sawing on the
gate's chain, but a friend shows that
there's a hill we could ride through
and gain access. We enter and there's
like 8 mobile homes, so I set upon
the doors with a crowbar. There isn't
much in them but some kind of toy
gun, clothes and boring shit. I spot a
shelter with a locked cabinet. Every-
one goes over there and it's pad-
locked. I also spot a box of playboy
magazines, which will be fun to take
after the cabinet is opened. Crowbar
is useless, but I spot a maul, which is like a combina-
tion axe and sledgehammer. 20 loud as fuck blows
or so later, the lock is off and I'm going through the
cabinet. It only has an ammo box full of handtools
and other boring shit. Then friend says she hears
someone coming. We argue then spot a truck com-
ing towards us. OH SHIT OH SHIT OH SHIT

Everyone hops on the ATV and take off with a
truck in pursuit. I remember the .22 pistol in my
backpack and take it out. I aim it at the truck but
there wasn't a round chambered. We slow down as
the bolt gets pulled, but by then the threat is away
so I put the gun away. Friend takes off her hoody
and tosses it off a hill on the way home. Once safe,
friend goes for a bath while I think about how fuck-
ing close that was, my adrenaline still pumping. I
hear my name called and I'm asked through the
bathroom door to go back and get the hoody, since

it had a school logo and some personal things. I
laugh and say, sucks to be you, get it yourself. She
says open the door, and I do. She's naked in the
bath. Please go get it or else I might get in trouble.
I suggest she doesn't want to and friend says come
on you are getting to see my boobs. I don't think C
cups with tan lines looks so great, but agree to. I
take a walk through light sprinkling rain because
anything else seems too sketchy. Hoody is found
and a long walk home ensues. My friend is happy
to have it. She leaves.

Next time the friend and I go to another cabin
since they are safer to hit; after breaking a window
on the front door we are in. Only this isn't a nor-
mal cabin. It has weird shit in it. Like a second half
of a deer mounted to the wall with a toy vagina
attached. Everyone is sketched out. I suggest we
burn the place to the ground but no one feels like
going to get a can of gas and a lighter so everyone
just wrecks the place and writes comments on the
wall about how sick it is. I'm tempted to go back for
a pic. On the way home, mother waits for me and
asks why I have a backpack. I don't really have an
answer, so mother looks inside and snaps when she
finds the gun. I get in trouble, losing my guns and
crowbar.

That weekend, I visit a gun show and trade stuff
for a dummy pineapple grenade and a .25 automat-
ic pistol. My family tells me the area they work in is

Lainzine, Issue 2 (August 2015) 13

heavily monitored, so I suggest we switch to home
invasions. One friend agrees, but the other says no.
Later we set out to rob a house with someone in
it by an area that's pretty much been robbed clean.
I suggest taking the .25 but I'm told it's not really
needed. So I grab a looted kitchen knife that looks
mean and pocket the hand grenade. We set out to
some houses but notice people by the road. What
a bunch of stupid dumb rednecks, I thought as one
jumped on the ATV, turned it off, and took out the
key. I wish I still had that gun so I could shoot all
3 of them, but I'm too sketched out to even pull
a knife. Friend talks them into believing everyone
was innocent and somehow know one of them.
Everyone is let go and ride home but we notice
some others with a similar ATV and one looks like
the girl I'm with. I suggest we warn them, but friend
is like fuck that, let's get out of here.

I go home to learn someone had called her par-
ents and told about the stop. Everything got down-
played by the lynch mob because they thought my
friend and I were innocent. Dumb fucks. I decide to
quite whilst ahead. Later, I read in the newspaper
that some poor sod confessed to everything I did
and some other shit I didn't know of.

A few years later, a classmate told me that some
asshole robbed their mobile home half an hour af-
ter getting caught having sex on their picknick ta-
ble. They had an ATV just like mine, only it was 4x4.
That's how they knew it wasn't me. I agreed. I felt
sorry for the guy in jail who was mostly innocent
and decided to never do shit like that again.

The end.

4

A Crash Course to LATEX
Do you ever get annoyed while writing papers be-
cause of a lack of layout consistency? Do you hate it
when you need to change everything by hand? Do
you ever try to click on something that just won't
highlight, for some godforsaken reason? Or want
to display fancy mathematical formulas, but your
WYSIWYG editor is too cumbersome to handle?

If you answered yes to any of the questions
above, I've got just the thing for

you: LATEX. Now, before you put on that catsuit,
let me explain to you what LATEX is.

LATEX is a markup language designed to be both
logical and easily extended. Most of you proba-
bly have at least a little experience with markup
languages: Markdown is a very popular one, for
instance. But why would you use LATEX over any
other WYSIWYG editor? It's easy: because it's easi-
er to keep track of your document's structure, less
hassle (usually), and because it has implementa-
tions for lots of neat formulas. But let's cut the crap,
and start editing.

Installation

Before you begin, you should know that LATEX is
written in plain text (saved with the .tex extension),
and then converted by a special program, to all
sorts of formats (for example, HTML or PDF). On Li-
nux, you can install a package called texlive with
your favorite package manager, and then execute
pdflatex <filename> to convert your file to PDF.
I don't use Windows or Mac myself, but MiKTeX is
popular for Windows, and MacTeX is popular for
Mac, so those are probably your best shot.

Besides PDF, there are a lot of other formats LA-

TEX converts to, like HTML, DVI, PostScript, RTF, and
even images, for some reason. These all have their
own compilers, which you can also easily find with
a quick search on the wired.

Actually Starting

Alright then, now that you've got your LATEX-to-PDF

14 Lainzine, Issue 2 (August 2015)

converter all set up, let's have a look at some text
you can compile, shall we? I believe in learning
by example, so that's exactly what we're gonna do.
Now, LATEX uses commands to perform markup op-
erations; all commands start with a backslash, and
look something like \command[option1][option2]
{argument1}{argument2}.

Generally speaking, most everyday commands
only have one argument and no options, but there
are more complex exceptions. The syntax is always
the same.

Here is an example LATEX file:

Decyphering

Now, there's a lot going on here, so we'll go through
it line by line.

1 In line one, we define the document class, which
defines how our article will look. Our document
uses “article”, which is the most frequently used
class, but many others exist. Feel free to look
into these, but if you ever don't know what to
pick, pick article. We also tell the compiler the
size of our paper (A4) and the size of our font
(12 pt).

3 to 5 In these lines, we define the author, date and
title for our document, which will be used on our
title page. Since I haven't the faintest when this
sketch first aired or was written, I'm leaving the
date blank. If you completely leave out the date
command, it will default to the current date.

7 and 36 These lines declare the start and end
of our document. The actual formatting will be
done between them.

8 This command makes sure that the current page
(the first one, in this case) gets excluded from

the page numbers. We want this here
because this is our title page.

9 This command formats our title page
with the title and the author. Normally
the date would be displayed here too,
but since we left that empty, it won't
be.

10 This command makes sure the rest
of the current page will be kept blank,
and puts the 'cursor' on the next page.

11 Here, we set the page numbering to
arabic (1, 2, 3, 4). Other possible ar-
guments are roman (i, ii, iii, iv), Roman (I,
II, III, IV), and alph (a, b, c, d). Small ro-
man numbers look like soykaf though,
don't use them.

13, 17, 21, 30, and 34 These commands
declare, as you might have guessed,
sections. A section is a part of the doc-
ument, with a title above it, which is
specified in its argument.

 1 \documentclass[a4paper,12pt]{article}

 2

 3 \title{Chocolate Mooose}

 4 \date{}

 5 \author{The Swedish Chef}

 6

 7 \begin{document}

 8 \pagenumbering{gobble}

 9 \maketitle

10 \newpage

11 \pagenumbering{arabic}

12

13 \section{Step oone}

14 Noo, toodie wee well meg dee \emph{chocolate mooose}.

15 Step oone, geet a five-pound block oof chocolate.

16

17 \section{Step Twoo}

18 Step twoo, get dee mooose. Heer, mooosee mooosee mooosee

19 mooosee!

20

21 \section{Step three}

22 Step three, put dee mooose een dee bleender.

23

24 \textbf{Nuutice}: dee bleender cun't hundel dee entlers.

25 Put dee entlers een last.

26

27 \subsection{tiip}

28 Seeve dee entlers, yoo cun use dem fur furks.

29

30 \section{Steep fuur}

31 Steep fuur, put chocolate een weeth moose, und bleend egen.

32 % This is a comment. Hi.

33

34 \section{Duuuune!}

35 Uum! Dees ees guud mooosee!

36 \end{document}

Lainzine, Issue 2 (August 2015) 15

14 The emph command in this section puts em-
phasis on its argument: normally this displays
as italic text, except when you nest emph com-
mands, in which case the second emph will be-
come normal text again (so it still stands out).

24 The textbf command here makes text bold.
27 This command declares, yes, you've guessed

it once again, a subsection. These get slightly
smaller titles than normal sections.

32 The text after % is a comment. It will be ignored
by the compiler. Comments can be placed in-line
as well as on their own lines.

As you can see, the actual text in every section
is indented. This is not required (at least not with
most compilers), but considered a good organiza-
tion practice, as it makes your document easier to
read and edit.

Conclusion

This article was but a short introduction to LATEX.
If you want more (and you should), I highly recom-
mend the wikibook listed in the credits below.

LATEX might feel a bit alien in the beginning, but
it is really the soykaf once you get the hang of it.

Thanks for reading.

The source file for this document and the exam-
ple, if you want to check them out, can be found at
https://vivesce.re/lainzine/latex.

Credits

• http://www.puppetresources.com/documents/
script49.txt: Place where I got the muppet script.

• https://en.wikibooks.org/wiki/LaTeX: A wikibook
about LATEX, from which I pulled some informa-
tion I had forgotten.

• LATEX: Some silly markup language I wrote this
article in.

• My parents: For telling me to not go on nefarious
websites with hackers and stuff. I– I'm sorry.

4

https://vivesce.re/lainzine/latex
http://www.puppetresources.com/documents/script49.txt
http://www.puppetresources.com/documents/script49.txt
https://en.wikibooks.org/wiki/LaTeX

16 Lainzine, Issue 2 (August 2015)

Console Hacking
You've got all these computers,
do something cool with them

Most of us have at least some form of gaming de-
vice, be it a dedicated console or a handheld. More
often than not, it's been locked down by its manu-
facturer, to prevent the user from using it as what
it is – a computer. There's a rich community built
around homebrewing, or breaking those bounda-
ries, giving fun new uses for your old (and newer)
systems, and the main draw: piracy! This article
intends to be a cursory overview of some of the
coolest things you can do. These are just starting
points – I suggest going to gbatemp.net to learn
more about how each system works, and as always,
Google is your friend. Think creatively! I have a
friend who used a Nintendo DS as an offline PDA
and a VOIP phone. Why buy a Palm Pilot when you
can use DSOrganize?

Nintendo DS

Using a DS for homebrew is as easy as buying a Chi-
nese flash cartridge off the net, meaning it's pretty
much the easiest system to tinker around with.

Flash cards – available in two varieties, Slot-1
and Slot-2 (for original and DS Lite). Use them to
play ROMs and run homebrew applications. Be-
cause of their comparability and extended features,
I recommend the Supercard DS One for Slot-1 (DS
mode), and the Supercard CF/Mini SD for Slot-2 (for
GBA mode), the reason being that the DS One can
use the CF as a RAM expansion, and serves as a No-
Pass. Supercards have the most features and widest
compatability – get one. Other options are the R4
and CycloDS, but they're not as cool.

Passme/NoPass is the name of the protocol
which runs off a Slot-1 card, to boot homebrew
from Slot-2. If you want to use a Slot-2 card, you'll
first need a Slot-1 that supports booting, such as
an R4, a Superkey, or any Slot-1 Supercard. Fun

https://gbatemp.net/

Lainzine, Issue 2 (August 2015) 17

fact: Action Replay DS has a hidden key command
at boot to launch NoPass.

Flashme5 – use a Passme/NoPass card to install
custom firmware to the DS. Lets you launch Slot-2
carts from the main menu, and speeds up your boot
time.

GBAccelerator DS6 – a small modchip to over-
clock your DS, for shits and giggles.

Recommended applications – Moonshell media
player, DSOrganize, DSLinux, lameboy, snes9x, Sv-
SIP (turn your DS into a VOIP phone!).

PSP

Hacking a PSP is a bit harder, the idea is to flash
custom firmware in order to load homebrew. Your
success will vary depending on the model you have.
In general, the original 1000-series is the easiest to
modify, followed by early 2000 models, which vary
based upon the motherboard inside. Follow this
guide7 as your choice of firmware and model will
vary based on your circumstance.

There are a ton of well-made emulators for the
PSP, making it one of the best portable emulation
platforms out there. Some suggestions: Snes9x,
gpSP kai, PSPKVM. There's also a Cave Story port.

Playing PS1 games. Because the PSP has a built-
in PS1 emulator, you can feed it PS1 ISOs with var-
ying results. There are a lot of PS1 games you can
run flawlessly on the PSP which haven't been offi-
cially ported, see this guide8 for more info or grab
some of the PSX2PSP EBOOT files off emuparadise.
org.

3DS

There are a few flash cards out for the 3DS, the Ace-
Kard and Sky3ds for example, but the leader is defi-

5 home.comcast.net/~olimar/flashme/
6 www.division-6.com/products/gbaccelerator-ds.
php
7 gbatemp.net/threads/psp-hacking-modding-f-a-q-
start-here.268289/
8 www.psxpsp.com/psx-eboot-creator.php

nitely Gateway. You can play 3DS and DS ROMs off
it, as well as run basic programs to manipulate the
emuNAND and system firmware. The scene's still
evolving, so there aren't as many good homebrew
applications out. However, many DS homebrew ap-
plications will also run on the 3DS in DS mode, and
it's hard to beat free stuff.

At the time of writing, systems with the newest
firmware will need to downgrade using the exploit
found in Cubic Ninja to use Gateway 3.1, either
through the physical game, or a ROM on a Sky3DS.
Still, I think the 3DS has a promising future, both as
an emulation platform, and also as an NFC reader
(in the new 3DS/XL models).

Wii

Softmodding a Wii is pretty damn easy, but it can
get surprisingly complex once you really start
messing with the internals, and it's easy to wind up
with a brick. Ask yourself what you want to do, and
follow some of the tutorials on GBATemp to help
guide you through the process of getting there.
Most Wii's nowadays will use System Menu version
4.3, which requires an exploit to load unsigned
code, and install the Homebrew Channel from
there. I suggest using Letterbomb to load the Hack-
Mii installer.

After that, you'll want to enable fake signing
homebrew, ala the Trucha bug. To do this, you need
to install some form of custom IOS, such as d2x.
After that, the gate lies open…

Some homebrew highlights: DVDX (lets your Wii
play DVD movies), USB Loader GX, Triiforce (for in-
stalling channels to flash drive emuNAND), Project
M (awesome Smash Bros mod), Wii Web Server, Wii-
Brator (I'm sure you'll find a use), Ocarina/GeckoOS
(cheating in games), DIOSMIOS (load Gamecube
games off an SD card). There's also a slew of emula-
tors for just about any system you could ever want

– the Wii is definitely the go-to emulation center.

http://www.emuparadise.me/
http://www.emuparadise.me/
http://home.comcast.net/~olimar/flashme/
http://www.division-6.com/products/gbaccelerator-ds.php
http://www.division-6.com/products/gbaccelerator-ds.php
http://gbatemp.net/threads/psp-hacking-modding-f-a-q-start-here.268289/
http://gbatemp.net/threads/psp-hacking-modding-f-a-q-start-here.268289/
http://www.psxpsp.com/psx-eboot-creator.php

18 Lainzine, Issue 2 (August 2015)

PS3

Hacking a PS3 is problematic, because you'll need
one with a firmware of version 3.55 or lower. There's
a good chance that any one you buy at the store or
anywhere else will have been updated to a new-
er one. Unless you want to spend money on an E3
Flasher, or pay someone to downgrade an existing
console, I suggest you buy a fresh 3.55 system off
Ebay, and install custom firmware from there. Still,
if you get it running, then you'll have a decently
powerful device under your control, which makes a
great server or media center.

Fun things to do. Mine bitcoins with cellminer.9
Get rid of your cable and/or Netflix subscriptions,
and stream anime and movies with Showtime

9 github.com/verement/cellminer

through Navi-X. Play Metal Gear Online.10 Install
Multiman, run FTP and web servers, and play pirat-
ed games.

4

10 savemgo.com/forums/viewtopic.php?f=9&t=783

https://github.com/verement/cellminer
https://savemgo.com/forums/viewtopic.php?f=9&t=783

Lainzine, Issue 2 (August 2015) 19

Night Ops
A guide to shenanigans and fun things
to do when the world's asleep

Remember the cardinal rules of night ops:

1. Only play when you know you'll succeed.
2. Only carry what you need. Don't carry ID.
3. If operating with friends, practice easy things as

a group before doing risky things.
4. When in doubt, abort the mission and go home.
5. If you're in danger, drop whatever you're holding

and run.
6. Prepare before you leave, plan what you're doing

and don't leave home without your brain.

So, you want to do fun things at night of ques-
tionable legality? Perhaps you're an aspiring pen-
tester, and you want to get some experience in in-
filtrating past people, or maybe you're going to try
some urban exploration. Maybe you played a lot of
Metal Gear and now you're wondering if it works in
real life. Or maybe you're just bored, and you just
want to break stuff or steal things, to each their
own.

When venturing out at night, it's important to
recognize that you're fundamentally putting your-
self at risk, especially if what you're doing is illegal.
There are all kinds of things that could happen, you
could be harassed by police, you could be jumped
by thieves, or if you're doing some kind of stealth
mission, you could be discovered. As such, it's im-
portant to take what you're doing seriously, and to
not leave home without your brain.

My friends and I have been practicing night ops
for several years. This document is a rough outline
of how we organize ourselves and how we handle
ourselves during a mission.

Missions are generally assigned ranks based on
their difficulty and threat model – the highest be-
ing an S-Rank mission, the lowest being a D-Rank.
People without experience should only attempt
lower-ranked missions, until they understand how
to function as a team. Before embarking on a mis-

sion, ask yourself these questions: “Do I understand
all the forces at play in what I am attempting?” “Can
the people in my team handle the mission?” “Do I
have all the supplies and information I need?”. If
you can say “yes” to all of those questions, then you
can proceed.

Without further ado, here are some suggestions
for fun missions you could try, or you could make
your own!

D-Rank Missions

Play the “Cars” game. Get from point A to point B
without being seen. This includes people on the
street, people in houses, and people in cars. Wear
dark clothing and try for absolute stealth. If you
are seen three times, the game is over, stop sneak-
ing and go home, because it's possible that one of
those three people might have called the police
on you. This makes a good team-building exercise
with a relatively low risk.

Go dumpster diving. Wear thick jeans and boots,
carry a flashlight and a small razor for slicing bags.
The proper posture for getting stuff out of a dump-
ster is not to dive inside, rather lean in on your
waist, like a teeter-totter. The best places to hit are
bakeries and supermarkets for food, or tech outlets
for things like cables, and the occasional TV that
you might be able to fix.

Relatively low-risk. If you're stopped by police,
drop your razor and light in the bin, and say that
you're moving and were just gathering boxes. Some
dumpsters may be locked, requiring some lockpick-
ing skills.

Vandalize something. Hate someone? Pour sug-
ar in their gas tank, or key their car. Smash pump-
kins on Halloween. Place fireworks in things you
want to blow up. The possibilities are endless, just
don't get caught.

C-Rank Missions

Urban exploration. This will probably require
some lockpicking skills – learn how and practice
before attempting this. Some vacation hotspots:

20 Lainzine, Issue 2 (August 2015)

• the tallest building in your town,
• underground tunnels,
• rooftops of apartment buildings,
• university campuses,
• subway systems,
• abandoned buildings,
• warehouses and factories,
• construction sites.

You may encounter squatters, police, or other un-
ruly people when exploring, so always dress as if
you belong in the place you're exploring. A reflec-
tive vest or a lanyard and badge can give the psy-
chological effect that you might have some sort of
reason to be where you are, even if you don't.

Abandoned buildings are good places to practice
graffiti.

B-Rank Missions

Make a drug deal. Take a friend with you and head
downtown. Try to score your drug of choice from
people who look like they might be dealers. Be
wary of people who might try to lure you and jump
you, never give someone money before you see the
product. Look out for cops, it helps to recon the
area a bit before approaching anyone to observe
people's behaviours, and sniff out any would-be
undercover stings. Definitely only to be attempt-
ed with someone you trust at your side, who won't
leave you hanging in a tense situation.

A-Rank Missions

Graffiti a public place. Dress inconspicuously, and
decide what colors and tools you're going to use
before you head out. Travel light, and don't be
afraid to split the work into multiple nights, if you
think you can't carry everything in one pass, or if

Lainzine, Issue 2 (August 2015) 21

you think you can't finish by morning. If you can, try
to conceal your paint, in a bag, or possibly putting
that spray can in a chip bag or Pringles tube. It can
help to bring a friend with you to serve as a lookout.

If you're bombing a trainyard, and have to paint
near tracks, be forewarned of the “suction” effect
that can come from passing trains – if you hear a
train coming, get as far away from the track as pos-
sible, and lay down/hold on to something if you can.

S-Rank Missions

Steal something important, take revenge, or other-
wise get creative. I'm sure you can think of some-
thing. Use your best judgement.

Remember to say safe, the penalties of failure
can be severe. Make sure everyone in your unit is
experienced, reliable and trustworthy – one weak
link can cause the whole operation to fail. That said,
have fun, shadow hide you.

4

22 Lainzine, Issue 2 (August 2015)

1
by ~

Make every bit count.
Neither high-speed nor high-bandwidth equal

high quality, and being bombarded with media
does not make us more informed.

Make every bit count.
Why? Because every bit costs energy. A small

amount of energy, sure, but those small amounts
add up. Once the gas runs out, every last scrap of
energy becomes precious.

Make every bit count.
Language is a steady stream of information, and

text is the purest form of language. The amount
of information you can pack into, for example, 140
characters, is astonishing, the amount of text you
can pack into, for example, 140 kilobytes, equally
so.

Make every bit count.
Given time, Nature strips the fat from every

system. Computer systems are no exception. If
it doesn't help an organism to survive in a given
environment, it will disappear, become part of the
fossil record.

Make every bit count.
Right now, we stand atop the mountain. We put

batteries in our toothbrushes, we use industrial
processes to manufacture toys that will be for-
gotten in a matter of days, added to the mountain.
Crunch. But, though the mountain we have built is
ugly, the view is incredible. Enjoy it while you can.
Take in every detail. Draw a map.

Make every bit count.
A man climbs a hill, not a mountain of refuse but

a hill of soil, anchored in place by a thousand trees.
He reaches the top, and meets what he has always
met on this hilltop: a small stone shelter contain-
ing a giant disc, twelve feet in diameter. He takes
a key from around his neck and slides it into the
hole in the side of the structure. A simple control
panel is revealed. One switch, one button. He flips
the switch, and the sunlight collected by the solar
panel on the roof of the structure and stored by the

large battery inside flows into the computer within,
breathing life into the delicate silicon organs. He
hits the button, and the disc sends out a ping, a
single bit of information. I am here.

Make every bit count.

4

Lainzine, Issue 2 (August 2015) 23

Keeping Application Data Safe with GnuPG
by deterenkelt

Many applications store data on the disk unen-
crypted or in a way that can be easily cracked. Web
browsers, IM, email and WebDAV clients do this, but
that's only the beginning of the list. Roughly 80 %
of a user's passwords are stored unencrypted. Let's
take a look at how Firefox stores them, for example.
If a master password is specified, Firefox uses 3DES,
or Triple Data Encryption algorithm. However, if no
master password is set, the data is about as hard to
crack as any plain text document.11,12 With no mas-
ter password, files are simply encoded into base 64,
which is not meant to encrypt data, but to change
its representation to an ASCII string that would be
easy to transmit (e.g. embedding small images in
HTML files to avoid superfluous server requests).

3DES is considered safe to use until 2020, but
it usually requires three different passwords, and
3DES' strength highly depends on the strength of
those passwords.13,14 A short password offers the
same security as no password, because not only
does specialized cracking software exist for 3DES
encrypted files, such software is freely available.15
This means that if we want our data to be secured,
we have to use a long master password for each
program that supports a good type of encryption.
And what about the programs that don't? Moreo-
ver, remembering dozens of long master passwords
for browsers, IM, and email, as well typing them
every time a program starts? That's a bit inconven-

11 How browsers store your passwords (and why
you shouldn't let them). http://raidersec.blogspot.
in/2013/06/how-browsers-store-your-passwords-and.
html
12 Hacking / Recovering Firefox Saved Passwords.
http://realinfosec.com/?p=132
13 Master password encryption in FireFox and
Thunderbird. https://luxsci.com/blog/master-password-
encryption-in-firefox-and-thunderbird.html
14 https://en.wikipedia.org/wiki/Triple_DES
15 FireMasterCracker. http://securityxploded.com/
firefox-master-password-cracker.php

http://raidersec.blogspot.in/2013/06/how-browsers-store-your-passwords-and.html
http://raidersec.blogspot.in/2013/06/how-browsers-store-your-passwords-and.html
http://raidersec.blogspot.in/2013/06/how-browsers-store-your-passwords-and.html
http://realinfosec.com/?p=132
https://luxsci.com/blog/master-password-encryption-in-firefox-and-thunderbird.html
https://luxsci.com/blog/master-password-encryption-in-firefox-and-thunderbird.html
https://en.wikipedia.org/wiki/Triple_DES
http://securityxploded.com/firefox-master-password-cracker.php
http://securityxploded.com/firefox-master-password-cracker.php

24 Lainzine, Issue 2 (August 2015)

ient. Fortunately, keychains exist for dealing with this; however, keychains may lack support
and still require logging in – certainly not the most convenient. And what's the need in a
keychain, if GPG is already there? All that is needed is to encrypt some files holding account
information, and decrypt them temporarily somewhere outside the disk. This article covers
an example of such a setup.

Figure 1 illustrates the Firefox encryption scheme. It uses two files, key3.db and signons.
sqlite which reside in the profile folder. The former contains hash and salt, while the latter
website logins.

Prerequisites

This article is aimed at people who
are experienced with GNU/Linux, do
some shell scripting and have already
installed and set up GnuPG.16

Autorun Part

Upon the autorun script two tasks
are laid: ready gpg-agent, and modify
the environment for the application
wrapper script. The wrapper doesn't
have to be called from the autorun
script. For demonstrative purposes,
let's say it's called somewhere at the
end of the autorun script or right af-
ter it.

There are many ways to set some-
thing to run after login in a GNU/Li-
nux OS. Most preferred would be with
~/.xinitrc or ~/.Xsession, since
they're executed right after X starts,
but before it launches any window
manager, hence they're best suited
for altering the environment. These
two files and starting routines are

well described in the X Windows System Administrator's Guide.
First of all, we should find and mount our removable drive, which may be a flash stick,

smartphone SD card, or any other removable media. Let's say that the volume on the stick is
labeled 'PHONE_CARD' and we mount it to a directory named ~/phone_card.

grep -qF "$HOME/phone_card" /proc/mounts && \

 sudo /bin/umount $HOME/phone_card

16 wiki.debian.org/Keysigning

Figure 1

https://wiki.debian.org/Keysigning

Lainzine, Issue 2 (August 2015) 25

We must be sure it is not mounted and there is no 'stuck' record, while the device is not
attached physically. sudo is important, because most will work from an ordinary user envi-
ronment (and that's the right way to do it). In order to make sudo run this and some further
commands automatically without asking for the root password, several lines should be add-
ed to /etc/sudoers.

Cmnd_Alias ALLOW_ME_THESE_COMMANDS = /bin/mount, \

 /bin/umount, \

 /sbin/findfs

User_Alias ME = your_user_name

Defaults:ME env_reset

Defaults:ME env_keep += SHELL

ME ALL = (root) NOPASSWD: ALLOW_ME_THESE_COMMANDS

Don't forget to replace your_user_name with an actual name.

rm -f $HOME/phone_card

mkdir -m700 $HOME/phone_card

c=0; until grep -q $HOME/phone_card /proc/mounts || {

 disk=$(sudo /sbin/findfs LABEL=PHONE_CARD) && \

 sudo /bin/mount -t vfat -o users,fmask=0111,dmask=0000,rw,\

codepage=850,iocharset=iso8859-1,utf8 \

 $disk $HOME/phone_card

 }; do

 sleep 1 && [$((c++)) -gt 300] && break

done

A simple until cycle with a counter variable. The cycle body evaluates until $HOME/phone_
card is found in /proc/mounts. The body simply checks for a timeout of five minutes (300 s).
Now to the condition. There is a subshell call for /sbin/findfs that will attempt to find a
volume with label PHONE_CARD, and, if it does, the path to the actual device (e.g. /dev/sdc1)
will be placed to a variable named disk. Then this name is used in the mount command,
which sets options and filesystem type to vfat. The users option is to make userspace dae-
mons happy, otherwise it won't be possible to unmount the flash card from Thunar, for exam-
ple; fmask and dmask are usual parameters forbidding file execution on this medium, finally
codepage and iocharset are important for correct name handling on conversion to UTF-8.
The list of encodings can be seen in the kernel configuration menu in File Systems —> Native
Language Support. The settings above are for Western European languages.

rm -rf /tmp/decrypted &>/dev/null

mkdir -m 700 /tmp/decrypted

cp -R ~/phone_card/.gnupg /tmp/decrypted/

chmod -R a-rwx,u=rwX /tmp/decrypted

sudo /bin/umount $HOME/phone_card && rmdir ~/phone_card

26 Lainzine, Issue 2 (August 2015)

/tmp/decrypted is the directory where .gnupg and all decrypted files are to be placed. It
resides in /tmp, which has to be of the temporary filesystem type, tmpfs. That's the simplest
way to keep files in RAM while the computer is running. A symbolic link to .gnupg is placed
in the $HOME directory and file permissions are fixed because vfat doesn't understand UNIX
permissions. chmod is done recursively on that folder, first depriving all from any rights, then
giving 600 to files and 700 to directories for the user running the script. After all the files are
copied, the card is removed and the folder is deleted (that last line is optional, the card can
be left mounted, so it'd be possible to unmount it when leaving the computer).

Edit the /tmp related line in /etc/fstab to this:

tmpfs /tmp tmpfs defaults 0 0

Somewhere around here, you should set up the keyboard layout, because if the passphrase
contains symbols that are not present in some default PC101 layout, you won't be able to
enter them.

export GNUPGHOME=/tmp/decrypted/.gnupg

pgrep -u $UID gpg-agent || eval $(gpg-agent --daemon --use-standard-socket)

export GPG_TTY=`tty`

First, GNUPGHOME is exported, pointing at the directory where it should look for keys. pgrep
checks if a daemon is already running – there's no need to restart if it was left over from a
previous login, and if it's not present, it's to be launched. Current version of GnuPG (2.1.6)
doesn't rely upon GPG_AGENT_INFO completely, but it seems to be broken, so the code above
refers to 2.0.26-r3 as the most recent stable. Don't forget to put use-agent in the gpg.conf.
The recent versions of GnuPG should also start the agent automatically when gpg is called,
and they do, but later calls to gpg don't seem able to connect to the agent, the example
above is guaranteed to work for 2.0.26. The output of gpg-agent is eval'd because it exports
an important variable containing the path to the agent socket. For instance,

GPG_AGENT_INFO=/tmp/decrypted/.gnupg/S.gpg-agent:19667:1

GnuPG since v2 uses the name $GNUPGHOME/S.gpg-agent instead of a temporary directory
with a random name in /tmp, but in 2.0.26 gpg still isn't satisfied unless it finds the address
to the socket in GPG_AGENT_INFO variable.

This variable shall be present in the environment of every program that wants to decrypt
anything with keys that gpg-agent holds. At least until GnuPG 2.1 is fixed. However, there is
another necessary variable, GPG_TTY, that gets exported to the current environment, too. It
should be stressed, that only those programs that are launched from this shell or its de-
scendants will inherit these variables in their environment. This is why the ~/.xinitrc or
~/.Xsession way is preferred: autorun scripts in desktop environments may be run not in
the same shell that spawned the DE session, and the environment will get alternated in its
own 'branch' that other applications won't know of. In order for GPG_* variables to get into
every shell on your workspace, they must be exported in the same shell that spawns the DE
or earlier. To think of it, this export may take place even in ~/.bashrc, but it would mean that

Lainzine, Issue 2 (August 2015) 27

the whole thing has to be there, and that'd be a very bad idea.

export PATH="$HOME/bin:$PATH"

~/bin folder will contain the wrapper script. Here the autorun part ends, and it's the last
place to set up the keyboard which must be done before the first call to the wrapper, be-
cause when pinentry (the program that is used to ask for a passphrase) window pops up…
Right, the keyboard will be still in some default Xorg keyboard layout, and if the passphrase
is good and contains characters that are not present on it, they will be impossible to enter.

Wrapper

The scheme is as follows: there is a request for a program, let's say, firefox. Since ~/bin
is the first directory in PATH, it is checked before other directories. The shell will look for a
file named 'firefox' there. And we want to run a wrapper instead of Firefox, so how do we
do that? We create a symlink named 'firefox' that is pointing to the wrapper in the same
folder, and in the wrapper we distinguish between applications by the $0 variable which is
the script name. But in this case, it will be the name of the symbolic link the script is called
as. How do we avoid recursion while attempting to call actual Firefox, when we're done with
decrypting its files? It just needs to be called with the full path, like /usr/bin/firefox, or
whatever 'which firefox' says.

In general, to launch several applications in an autostart script, the following code may
be employed:

startup_apps=(firefox thunar pidgin)

...

for app in "${startup_apps[@]}"; do

 pgrep -u $UID -f "^$app\>" >/dev/null || { (nohup $app) & }

done

pgrep checks whether the application is already running and if it isn't, it's launched via a
forked subshell with nohup (to prevent it from dying after its parent shell closes). The user
id and the regular expression are to distinguish between applications that do not belong
to the current user and those whose command line does not coincide with the simple file
names as specified in the array above, i.e. to not confuse Bob's firefox with Alice's and mpd
with mpdscribble.

Let's look at the wrapper script internals.17

run_app is the function for running the actual application and decryption procedures. It
works for every program. It takes at least two arguments: $1 is absolute path to the actual
binary and $2..n are absolute paths to the .gpg files with secrets that reside in the same
directory as their unencrypted contents.

17 The snippets of code that follow were edited and focus on the key parts of the system. A link
to the full listing can be found at the end of this article.

28 Lainzine, Issue 2 (August 2015)

local app=$1

[["$app" =~ ^.*/.*$]] || {

 echo "This function must be given an absolute path \

to an actual binary, like /usr/bin/... or so." >&2

 exit 4

}

shift 1

Next, the files are decrypted.

for gpgfile in "$@"; do

 [-e "$gpgfile"] && {

 gpgfiles[${#gpgfiles[@]}]="$gpgfile"

 tmpfile="/tmp/decrypted/${gpgfile##*/}"

 tmpfile="${tmpfile%.gpg}"

 tmpfiles[${#tmpfiles[@]}]="$tmpfile"

Clearing these variables is important if you alternate them, e.g. to add SCIM support. Pi-
nentry has a known bug that causes input to be impossible sometimes.

GTK_IM_MODULE= QT_IM_MODULE= gpg -qd --output "$tmpfile" --yes "$gpgfile"

Saving last modification time for decrypted files to know whether they were changed
afterwards.

lastmods[${#lastmods[@]}]=`stat -c %Y "$tmpfile"`

…and symbolic links placed to where the application expects plain files to be.

 ln -sf "$tmpfile" "${gpgfile%.gpg}"

 } # end of "test -e"

done # end of "for gpgfile"

If the same wrapper hangs in memory, wait for five seconds and then bail out.

while pgrep -xf "^bash ${0##*/}$"; do

 sleep 1

 [$((i++)) -gt 5] && break

done

Testing if the actual app is still/already running, not allowing a second instance.

pgrep -axf "^app" || "$app"

When the application closes, check whether it has modified the files.

Lainzine, Issue 2 (August 2015) 29

for ((i=0; i<${#tmpfiles[@]}; i++)); do

 [${lastmods[$i]} -lt "`stat -c %Y "${tmpfiles[i]}"`"] && \

 modified=t

done

[-v modified] && {

 for ((i=0; i<${#gpgfiles[@]}; i++)); do

Sign, encrypt to hidden recipient, and place the updated file where the old one was.

GTK_IM_MODULE= QT_IM_MODULE= gpg --batch -se --yes \

 --output ${tmpfiles[i]}.gpg \

 -R *$USER ${tmpfiles[i]} &>>$elog || \

 echo "GPG couldn't encrypt ${tmpfiles[i]##*/}. See $elog \

for details." >&2

Not mv, because it erases symlinks.

 cp "${tmpfiles[i]}.gpg" "${gpgfiles[i]}"

done } # end of check for modified files

Erasing files from tmpfs. This may be done here, or the whole /tmp/decrypted can be
erased on logout (if the computer is not to be switched off).

for ((i=0; i<${#gpgfiles[@]}; i++)); do

 rm ${tmpfiles[i]} ${tmpfiles[i]}.gpg

done

... end of run_app()

And here are the actual first lines to be executed when the wrapper starts. They get the
name of the app the wrapper should start as and enable logging.

app_name=${0##*/}

elog="/tmp/runapp_$app_name"

echo >$elog

exec &>$elog

set -x

As simple as that. Each application is a case statement, which decides the paths to an
actual executable and encrypted files for a program.

case $app_name in

 # NB: only actual binaries with absolute paths here!

 firefox)

 [-e /usr/bin/firefox-bin] && \

 firefox=/usr/bin/firefox-bin || firefox=/usr/bin/firefox

30 Lainzine, Issue 2 (August 2015)

$@ are the arguments passed to the command. When some other application runs firefox
with arguments, it usually wants to open a link, so if Firefox is already running, don't start
another wrapper and send a command opening the link in a new tab.

if pgrep -u $UID -xf "^$firefox$" &>/dev/null; then

 $firefox -new-tab "$@"

else

 run_app $firefox \

 ~/.mozilla/firefox/profile.xqwzts/key3.db.gpg \

 ~/.mozilla/firefox/profile.xqwzts/signons.sqlite.gpg

fi

Don't forget to replace profile.xqwzts with an actual profile folder.

 *)

 cat <<"EOF"

Usage:

 Just use symbolic links:

 ln -s ~/bin/run_app.sh ~/bin/firefox

Don't forget to `export PATH="$HOME/bin:$PATH"`!

EOF

 exit 3 ;;

esac # $app_name

Addendum

This setup isn't meant to form a bastion of safety, it's aimed at a compromise between
convenience and securing files on workstations other people may have access to. The other
purpose is to make it safer to backup on cloud services. This setup is vulnerable to attacks
from the code users run by their own will, e.g. if a malicious script wants to run something
with GPG, it will decrypt files automatically. Of course, the script must know that the files are
encrypted with GPG and where they reside. Or that ~/bin/run_app.sh is being used. If you
are truly afraid that somebody has access to your computer when you don't, use keychains
and make them ask for a passphrase each time such a request comes. Or better don't use
them at all and perform all encryption operations manually.

Complete File Listings

• https://github.com/deterenkelt/dotfiles/blob/3ae623d/.preload.sh
• https://github.com/deterenkelt/dotfiles/blob/f035f3d/bin/run_app.sh

4

https://github.com/deterenkelt/dotfiles/blob/3ae623d/.preload.sh
https://github.com/deterenkelt/dotfiles/blob/f035f3d/bin/run_app.sh

	Editor's Note
	Word Search
	The Way of Schway
	Repairing Old Electronics
	A Dream of Lain
	Recommended Reading
	Untitled
	A Crash Course to LaTeX
	Console Hacking
	Night Ops
	1
	Keeping Application Data Safe with GnuPG

